Biología Genetica

Reacción en cadena de la polimerasa (PCR)

Origen: Reacción en cadena de la polimerasa (PCR) (video) | Khan Academy

Puntos más importantes:

  • La reacción en cadena de la polimerasa, o PCR, es una técnica para hacer muchas copias de una determinada región de ADN in vitro (en un tubo de ensayo en lugar de un organismo).
  • La PCR depende de una ADN polimerasa termoestable, la Taq polimerasa, y requiere de cebadores de ADN diseñados específicamente para la región de ADN de interés.
  • En la PCR, la reacción se somete repetidamente a un ciclo de cambios de temperatura que permiten la producción de muchas copias de la región blanco.
  • La PCR tiene muchas aplicaciones en la investigación y en la práctica. Se utiliza de forma rutinaria en la clonación de ADN, el diagnóstico médico y el análisis forense de ADN.

¿Qué es la PCR?

La reacción en cadena de la polimerasa (PCR) es una técnica de laboratorio común utilizada para hacer muchas copias (¡millones o miles de millones!) de una región particular de ADN. Esta región de ADN puede ser cualquier cosa que le interese al experimentador. Por ejemplo, podría ser un gen cuya función quiere entender un investigador o un marcador genético usado por científicos forenses para relacionar el ADN de la escena del crimen con los sospechosos.
Por lo general, el objetivo de la PCR es producir suficiente ADN de la región blanco para que pueda analizarse o usarse de alguna otra manera. Por ejemplo, el ADN amplificado por PCR se puede secuenciar, visualizar por electroforesis en gel o clonar en un plásmido para otros experimentos.
La PCR se utiliza en muchas áreas de la biología y la medicina, como la investigación en biología molecular, el diagnóstico médico e incluso algunas ramas de la ecología.

La Taq polimerasa

Al igual que la replicación de ADN en un organismo, la PCR requiere de una enzima ADN polimerasa que produzca nuevas cadenas de ADN mediante el uso de las cadenas existentes como molde. La ADN polimerasa que normalmente se utiliza en la PCR se llama Taq polimerasa, por la bacteria tolerante al calor de la que se aisló (Thermus aquaticus).
T. aquaticus vive en aguas termales y fuentes hidrotermales. Su ADN polimerasa es muy termoestable y su mayor actividad se presenta cerca de los 70°C (temperatura a la que la ADN polimerasa de ser humano o de E. coli no funcionaría). La Taq polimerasa es ideal para la PCR gracias a esta estabilidad térmica. Como veremos, la PCR utiliza altas temperaturas repetidamente para desnaturalizar el molde de ADN o separar sus cadenas.

Cebadores para PCR

Al igual que otras ADN polimerasas, la Taq polimerasa solo puede hacer ADN si hay un cebador, una corta secuencia de nucleótidos que proporciona un punto de partida para la síntesis de ADN. En una reacción de PCR, la región de ADN que será copiada, o amplificada, se determina por los cebadores que el o la investigadora elija.
Los cebadores para PCR son pedazos cortos de ADN de cadena sencilla, generalmente de unos 20 nucleótidos de longitud. En cada reacción de PCR se utilizan dos cebadores que están diseñados para flanquear la región blanco (la región que debe ser copiada). Es decir, les agregan secuencias que harán que se unan a cadenas opuestas del molde de ADN solo en los extremos de la región a copiar. Los cebadores se unen al molde mediante complementariedad de bases.
 

ADN molde:
5′ TATCAGATCCATGGAGT…GAGTACTAGTCCTATGAGT 3′ 3′ ATAGTCTAGGTACCTCA…CTCATGATCAGGATACTCA 5′
Cebador 1: 5′ CAGATCCATGG 3′ Cebador 2:
Cuando los cebadores se unen al molde, la polimerasa los extiende y la región que se encuentra entre ellos se copia.
 

Los pasos de la PCR

Los ingredientes clave para una reacción de PCR son Taq polimerasa, cebadores, ADN molde y nucleótidos (los bloques básicos del ADN).

Los ingredientes se colocan en un tubo, junto con los cofactores que necesite la enzima, y se someten a ciclos repetidos de calentamiento y enfriamiento que permiten la síntesis del ADN.
Los pasos básicos son:
  1. Desnaturalización (96°C): la reacción se calienta bastante para separar, o desnaturalizar, las cadenas de ADN. Esto proporciona los moldes de cadena sencilla para el siguiente paso.
  2. Templado (55 65°C): la reacción se enfría para que los cebadores puedan unirse a sus secuencias complementarias en el molde de ADN de cadena sencilla.
  3. Extensión (72°C): la temperatura de la reacción se eleva para que la Taq polimerasa extienda los cebadores y sintetice así nuevas cadenas de ADN.
 

Este ciclo se repite 25 35 veces en una reacción de PCR típica, que generalmente tarda 2 4 horas, según la longitud de la región de ADN que se copia. Si la reacción es eficiente (funciona bien), puede producir miles de millones de copias a partir de una o unas cuantas copias de la región blanco.
Eso es porque no solo se usa el ADN original como molde en cada ciclo. En realidad, el nuevo ADN que se produce en una ronda puede servir como molde en la siguiente ronda de síntesis de ADN. Hay muchas copias de los cebadores y muchas moléculas de Taq polimerasa flotando en la reacción, por lo que el número de moléculas de ADN casi puede duplicarse en cada ciclo. La siguiente imagen muestra este patrón de crecimiento exponencial.
 

Uso de la electroforesis en gel para visualizar los resultados de una PCR

Habitualmente, los resultados de una reacción de PCR se visualizan (se hacen visibles) al usar electroforesis en gel. La electroforesis en gel es una técnica en la que una corriente eléctrica impulsa fragmentos de ADN a través de una matriz de gel y los fragmentos de ADN se separan según su tamaño. Típicamente se incluye un estándar, o marcador de peso molecular, para que pueda determinarse el tamaño de los fragmentos en la muestra de PCR.
Los fragmentos de ADN de la misma longitud forman una “banda” en el gel que se puede identificar a simple vista si el gel se tiñe con un pigmento que se una al ADN. Por ejemplo, una reacción de PCR que produce un fragmento de 400 pares de bases (pb) se vería así en un gel:
 

Carril izquierdo: marcador de ADN con bandas de 100, 200, 300, 400 y 500 pb.
Carril derecho: resultado de la reacción de PCR, una banda de 400 pb.
Una banda de ADN contiene muchas, muchas copias de la región blanco de ADN, no solo una o unas cuantas copias. Dado que el ADN es microscópico, deben existir muchas copias de este para poder verlo a simple vista. Esto es una parte importante de por qué la PCR es una herramienta importante: produce suficientes copias de una secuencia de ADN para poder ver o manipular esa región de ADN.

Aplicaciones de la PCR

Mediante el uso de la PCR, una secuencia de ADN se puede amplificar millones o miles de millones de veces y producirá suficientes copias de ADN para que se analicen mediante otras técnicas. Por ejemplo, el ADN se puede visualizar por electroforesis en gel, enviar a secuenciar o digerir con enzimas de restricción y clonar en un plásmido.
La PCR se utiliza en muchos laboratorios de investigación, y también tiene aplicaciones prácticas en medicina forense, pruebas genéticas y diagnósticas. Por ejemplo, la PCR se utiliza para amplificar genes asociados con trastornos genéticos a partir del ADN de los pacientes (o de ADN fetal, en el caso de pruebas prenatales). La PCR también puede utilizarse para detectar el ADN de una bacteria o un virus en el cuerpo de un paciente: si el patógeno está presente, es posible amplificar regiones de su ADN de una muestra de sangre o tejido.

Problema de ejemplo: la PCR en ciencias forenses

Imagina que trabajas en un laboratorio forense. Acabas de recibir una muestra de ADN de un cabello encontrado en la escena de un crimen junto con muestras de ADN de tres posibles sospechosos. Tu trabajo es examinar un marcador genético determinado y ver si alguno de los tres sospechosos coincide con el ADN del cabello para este marcador.
El marcador se presenta en dos alelos o versiones. Uno contiene una secuencia repetida una vez (región marrón en la siguiente imagen) y el otro contiene la secuencia repetida dos veces. En una reacción de PCR con cebadores que flanquean la región con las secuencias repetidas, el primer alelo produce un fragmento de ADN de 200 ,  y el segundo produce un fragmento de 300.
 

Alelo marcador 1: los cebadores que flanquean la región de secuencias repetidas amplifican un fragmento de 200 pb de ADN.
Alelo marcador 2: los cebadores flanquean la región de repetidas amplifican un fragmento de 300 pb de ADN
Realizas PCR para las cuatro muestras de ADN y visualizas los resultados por electroforesis en gel, como se muestra a continuación:
 

El gel tiene cinco carriles:
Primer carril: marcador de ADN con bandas de 100, 200, 300, 400 y 500 pb.
Segundo carril: ADN de la escena del crimen, banda de 200 pb.
Tercer carril: ADN del sospechoso #1, banda de 300 pb.
Fourth lane: sospechoso $2 DNA, 200 and 300 bp bands.
Quinto carril: ADN del sospechoso #3, banda de 200 pb.
 
Cual es el culpable?
Es mucho mejor ver esta información en su web original.
Ver link: Reacción en cadena de la polimerasa (PCR) (video) | Khan Academy

Agregar un comentario

Su dirección de correo no se hará público. Los campos requeridos están marcados *